On Distributability of Petri Nets

(extended abstract¥

Rob van Glabbeék?, Ursula Golt? and Jens-Wolfhard Schicke-Uffmahn

L NICTA, Sydney, Australia
2 School of Computer Sc. and Engineering, University of NewtBaVales, Sydney, Australia
3 Institute for Programming and Reactive Systems, TU Braunsiy, Germany

rvg@cs.stanford.edu goltz@ips.cs.tu-bs.de drahflow@gm x.de

Abstract. We formalise a general concept of distributed systems ases¢iql
components interacting asynchronously. We define a carnetipg class of Petri
nets, called LSGA nets, and precisely characterise thostersyspecifications
which can be implemented as LSGA nets up to branching Stbéity with
explicit divergence.

1 Introduction

The aim of this paper is to contribute to a fundamental unideding of the concept
of a distributed reactive system and the paradigms of symdus and asynchronous
interaction. We start by giving an intuitive characterigatbf the basic features of dis-
tributed systems. In particular we assume that distribsieiems consist of compo-
nents that reside on different locations, and that any $igoe one component to an-
other takes time to travel. Hence the only interaction meism between components
is asynchronous communication.

Our aim is to characterise which system specifications magnptemented as dis-
tributed systems. In many formalisms for system specificatir design, synchronous
communication is provided as a basic notion; this happensd@mple in process alge-
bras. Hence a particular challenge is that it may be negessaimulate synchronous
communication by asynchronous communication.

Trivially, any system specification may be implementedritistedly by locating
the whole system on one single component. Hence we needéspos additional re-
quirements. One option would be to specify locations foteysactivities and then to
ask for implementations satisfying this distribution atiil greserving the behaviour of
the original specification. This is done [A [1]. Here we persawdifferent approach. We
add another requirement to our notion of a distributed systeamely that its compo-
nents only allow sequential behaviour. We then ask whetharlitrary system specifi-
cation may be implemented as a distributed system congistisequential components
in an optimal way, that is without restricting the concugf the original specifica-
tion. This is a particular challenge when synchronous comigation interacts with
concurrency in the specification of the original system. Vilegive a precise charac-
terisation of the class of distributable systems, whicwams in particular under which
conditions synchronous communication may be implememeaddistributed setting.

* This work was partially supported by the DFG (German Re$eBozindation).

2 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

For our investigations we need a model which is expressivagimto represent con-
currency. Itis also useful to have an explicit represeatedif the distributed state space
of a distributed system, showing in particular the localtooinstates of components.
We choose Petri nets, which offer these possibilities adtiadally allow finite repre-
sentations of infinite behaviours. We work within the clakstauctural conflict net§4]
—a proper generalisation of the class of one-safe placsitian systems, where con-
flict and concurrency are clearly separated.

For comparing the behaviour of systems with their distedumplementation we
need a suitable equivalence notion. Since we think of opsetesys interacting with
an environment, and since we do not want to restrict connayre applications, we
need an equivalence that respects branching time and egencyrto some degree.
Our implementations use transitions which are invisibléhi® environment, and this
should be reflected in the equivalence by abstracting froch stansitions. However,
we do not want implementations to introduce divergencehénlight of these require-
ments we work with two semantic equivalencBtep readiness equivaleniseone of
the weakest equivalences that captures branching timeuc@amcy and divergence to
some degree; wherebganching ST-bisimilarity with explicit divergenéaly captures
branching time, divergence, and those aspects of conayrtbat can be represented
by concurrent actions overlapping in time. We obtain theesaharacterisation for both
notions of equivalence, and thus implicitly for all notiandetween these extremes.

We model distributed systems consisting of sequential @orapts as an appropri-
ate class of Petri nets, callédbGA netsThese are obtained by composing nets with
sequential behaviour by means of an asynchronous parafigbasition. We show that
this class corresponds exactly to a more abstract notioristriiliited systems, for-
malised aglistributed net$5].

We then consider distributability of system specificatiaméch are represented as
structural conflict nets. A neY is distributableif there exists a distributed implementa-
tion of IV, that is a distributed net which is semantically equivateny. In the imple-
mentation we allow unobservable transitions, and labgdliof transitions, so that single
actions of the original system may be implemented by muattphnsitions. However,
the system specifications for which we search distributggléementations arelain
nets without these features.

We give a precise characterisation of distributable netsrims of a semi-structural
property. This characterisation provides a formal proat the interplay between choice
and synchronous communication is a key issue for distriblitia

2 Basic Notions

We consider here general labelled place/transition nets avc weights. Arc weights
are not necessary for the results of the paper, but are iedlfat the sake of generality.
We will employ the following notations for multisets.

Definition 1. Let X be a set.
— A multisetover X is a functionA: X — IN, i.e. A € N,
— = € X is anelement ofa multisetA € IN*, notationz € A, iff A(z) > 0.
— For multisets4 and B over X we write A < B iff A(z) < B(x) forall z € X;

On Distributability of Petri Nets 3

A + B denotes the multiset ovéf with (A + B)(x) := A(x) + B(z),
A\ B denotes the multiset ovef with (A — B)(z) := max(A(z) — B(z),0), and
for k € IN the multiset: - A is given by(k - A)(x) := k- A(z).
— The function): X — IN, given by((x) := 0 for all x € X, is theemptymultiset.
— If A is a multiset overX andY C X thenA[Y denotes the multiset ovér
defined by(A [Y)(z) := A(x) forallz € Y.
— The cardinality A| of a multiset4 over X is given by|A| := > A(x).
— A multiset A over X isfiniteiff {z | x € A} is finite, i.e., iff |A] < occ.

Two multisetsA: X —IN and B: Y —IN areextensionally equivaleriff A [(X\Y)=0,
B(Y\X)=0,andA [(XNY)=B [(XNY). In this paper we often do not distinguish
extensionally equivalent multisets. This enables usyfstance, to usé+ B even when
A and B have different underlying domains.

A multiset A with A(z) € {0, 1} for all z is identified with the sefz | A(x) = 1}.

Definition 2. Let Act be a set ofisible actionsandr ¢ Act be aninvisible action
A (labelled) Petri net(overAct U {r})isatupleN = (S,T, F, My, ¢) where

— S andT are disjoint sets (gblacesandtransitiong,

— F:(SxTUT x S) — IN (theflow relationincludingarc weights,

— My : S — IN (theinitial marking), and

—0:T — Act U {7} (thelabelling function.

Petri nets are depicted by drawing the places as circlestanttansitions as boxes,
containing their label. Identities of places and transgiare displayed next to the net
element. Wher¥'(z,y) > 0 for z,y € S U T there is an arrowgrc) from z to y,
labelled with thearc weightF'(z, y). Weights 1 are elided. When a Petri net represents
a concurrent system, a global state of this system is givamasking a multiset\/ of
places, depicted by placiny (s) dots token3 in each place. The initial state is\/j.

To compress the graphical notation, we also allow univamsahtifiers of the form
Vz.¢(z) to appear in the drawing (cf. Figll 3). A quantifier replacesusrences ofr
in element identities with all concrete values for whigfx) holds, possibly creating
a set of elements instead of the depicted single one. An andh only one end is
replicated by a given quantifier results in a fan of arcs, eneéch replicated element.
If both ends of an arc are affected by the same quantifier, aisareated between
pairs of elements corresponding to the samleut not between elements created due to
differing values ofr.

The behaviour of a Petri net is defined by the possible moviegdem markings//
andM’, which take place when a finite multis@tof transitiondires In that case, each
occurrence of a transitionin G consumesd(s, t) tokens from each place Naturally,
this can happen only i/ makes all these tokens available in the first place. Nexh eac
t produces(t, s) tokens in eacl. Definition[4 formalises this notion of behaviour.

Definition 3. Let N = (S, T, F, My, ¢) be a Petrinetand € SUT.

The multiset$z, 2° : SUT — IN are given by z(y) = F(y, z) andz®(y) = F(z,y)
forally e SUT.If x € T, the elements ofz andz® are calledore- andpostplaces
of x, respectively. These functions extend to multis€ts S UT — IN as usual, by

X =2 esur X(z) - twandX® =370 o0 X(2) - 2.

4 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

Definition 4. Let N = (S, T, F, My,) be a Petri net7 ¢ N7, G non-empty and finite,
andM, M’ € N°. G is astepfrom M to M’, written M [G)y M', iff °*G C M (G is
enabled andM’ = (M \ °G) + G*.

Note that steps are (finite) multisets, thus allowing seli@rrency, i.e. the same tran-
sition can occur multiple times in a single step.

In our nets transitions are labelled wittttionsdrawn from a set Act) {7}. A
transitiont can be thought of as the occurrence of the acfion If 4(¢) € Act, this oc-
currence can be observed and influenced by the environment,4¢) = 7, it cannot
andt is aninternal or silenttransition. Transitions whose occurrences cannot bendisti
guished by the environment carry the same label. In pagticsince the environment
cannot observe the occurrence of internal transitiond,ghaly are all labelled.

To simplify statements about behaviours of nets, we use sdrbeeviations.

Definition 5. Let N = (S, T, F, Mo,é.) be a Petri net.
We write M; —*5 5 Mo, for o € Act U {7}, when3t € T. oo = £(t) A My [{t})n Mo.

ai1a2---Gn

Furthermore, fora as - - - a,, € Act™ we write M, =——= 5 M> when
M) =N y= B N=N =N y=N Mo

where—>y denotes the reflexive and transitive closure-6f .

Fora € Act U {7}, we write My % M, for My 55 MoV (a =7 A My = M),
meaning that in case = 7 performing ar-transition is optional. We writd/; — v
for dMs. M, iﬁv Mo, andMl —/a—>]v for ﬂMg.Ml iﬁv M. LikewiseMl[G>N
abbreviatesiM,. M1 [G) y M2. We omit the subscripVV if clear from context.

Definition 6. Let N = (S, T, F, My, ¢) be a Petri net.

— Amarking M € IN is said to baeachable inV iff there is ac € Act* such that
My ==y M. The set of alleachable markings oV is denoted byMj) .

— Nisone-saféff M € [My)y = Vz € S.M(z) <1.

— Theconcurrency relation— C T2 is given byt — u < IM € [My). M[{t,u}).

— N is astructural conflict netff for all ¢,u € T with ¢ — u we have*t N *u = (.

We use the termplain netsfor Petri nets wheré is injective and no transition has the
labelr, i.e. essentially unlabelled nets.

This paper first of all aims at studying finite Petri nets: néth finitely many places
and transitions. However, our work also applies to infiniésrwith the properties that
°t = () for all transitionst € T', and any reachable marking (a) is finite, and (b) enables
only finitely many transitions. Henceforth, we call suchafetitary. Finitariness can
be ensured by requirind/y| <co AVt € T.%t # D AVz € SUT. |2°| < oo.

We use the following variant of readiness semantics [11ptmgare behaviour.

Definition 7. Let N = (S, T, F, My, () be a Petri nety € Act* andX C INA“,
(0, X) is astep ready paiof N iff

IM.My == M AM = AX = {{(G) | M[G)}.

Here we extend the labelling functidrto finite multisets of transitions elementwise.
We write Z(N) for the set of all step ready pairs 0f.
Two Petri netsV; andN, arestep readiness equivaleiN; x4 Ns, iff Z(N1)=%(N3).

On Distributability of Petri Nets 5

ST-bisimilaritywas proposed in_[7] as a non-interleaved version of bisiityldhat
respects causality to the extent that it can be expresseatrimstof the possibility of
durational actions to overlap in time. It was extended totargewith internal actions
in [15], based on the notion efeak bisimilarityof [10]. Here we apply the same idea,
but based omranching bisimilarity[8], which unlike weak bisimilarity fully respects
the branching structure of related systems.

An ST-markingf anetN = (S, T, F, My, /) is a pair(M, U) e IN® x T* of a normal
marking, together with a sequence of transitionsently firing Theinitial ST-marking
is M, := (Mp,e). The elements of Aét := {a*, a=" | a € Act, n > 0} are called
visible action phasesindAct := Act™ U {r}. ForU e T*, we writet €(™ U if ¢ is
then'™ element ofU/. Furthermord/ —" denoted/ after removal of the:* transition.

Definition 8. Let N = (S, T, F, My, ¢) be a Petri net, labelled over Act{}.
TheST—trgnsition relationss for n € Act® between ST-markings are given by
(M,U) “5 (M',U")iff teT.L(t) =aANM[{t}) N\M' =M —*t NU' = Ut.
(M,U) “— (M, U")iff 3t €™ UL{t)=aANU =U"ANM =M +1t°.
(M,U) = (M, U")iff M - M' ANU' =U.

Now branching ST-bisimilarityis branching bisimilarity[8], applied to the labelled
transition system made up of ST-markings of nets and the&@Gitions between them.

Definition 9. Two Petri netsV; and N, arebranching ST-bisimilaiff there exists a
relationR between the ST-markings &f; and N, such that, for alh € Actf:
1. Mo RMoo;
2. if M, RO, and9, —Ls 9, then3L, M, such that
My = M, 25 0y, MRS and O, RMY;
3. if 21, R, anddt, —L 901, thenIMT, M) such that
My = mi L oy, MIRM, and, RN

If a system has the potential to engage in an infinite sequeficgernal actions, one
speaks offivergence Branching bisimilaritywith explicit divergencég], is a variant
of branching bisimilarity that fully respects the divergibehaviour of related systems.
Since here we only compare systems of which one admits nagdisee at all, the
definition simplifies to the requirement that the other systeay not diverge either. We
write Ny szSTb Ns iff N1 andN, are branching ST-bisimilar with explicit divergence.

3 Distributed Systems

In this section, we stipulate what we understand by a digieith system, and subse-
quently formalise a model of distributed systems in termBetfi nets.

— A distributed system consists of components residing derdift locations.

— Components work concurrently.

— Interactions between components are only possible bya@kptimmunications.
— Communication between components is time consuming antthsynous.

Asynchronous communication is the only interaction medraiin a distributed system
for exchanging signals or information.

6 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

— The sending of a message happens always strictly befoezigt (there is a causal
relation between sending and receiving a message).

— A sending component sends without regarding the state okttaver; in particu-
lar there is no need to synchronise with a receiving compordter sending the
sender continues its behaviour independently of receiffiteomessage.

As explained in the introduction, we will add another reqoient to our notion of a
distributed system, namely that its components only alleguential behaviour.

Formally, we model distributed systems as nets consistimpmponent nets with
sequential behaviour and interfaces in terms of input andutyplaces.

Definition 10. Let N=(S, T, F, My, ¢) be aPetrinet[, OC S, INO=0 andO* = (.
1. (N,I,0) is acomponent with interfacel, O).
2. (N,1,0) is asequentiatomponent with interfacgl, O) iff 3Q C S\ (/U O) with
Vie Tt Q| =1At°1 Q| =1and|M, | Q| = 1.

An input place; € I of a component can be regarded as a mailbox®for a specific
type of messages. An output place O, on the other hand, is an address outgide
whichC can send messages. Moving a token mi®like posting a letter. The condition
0® = () says that a message, once posted, cannot be retrieved byntipecent.

A set of places like) above is called av-invariant The requirements guarantee
that the number of tokens in these places remains congtahtsicasd . It follows that
no two transitions can ever fire concurrently (in one stephversely, whenever a net is
sequential, in the sense that no two transitions can fireénstep, it is easily converted
into a behaviourally equivalent net with the requir&dnvariant, namely by adding
a single marked place with a self-loop to all transitionsisTinodification preserves
virtually all semantic equivalences on Petri nets from ttezdture, including=y .-

Next we define an operator for combining components with @sganous commu-
nication by fusing input and output places.

Definition 11. Let 8 be an index set.

Let ((Sk, Tk, Fr, Moy, k), I, Ox) with k € R be components with interface such that
(SkUTL)N (S UT)) = (I UOk) N (L;UO)) forall k,1 € & with k # [(components
are disjoint except for interface places) and moredyen I; = () for all k,l € & with

k # [(mailboxes cannot be shared; the recipient of a messageagsalinique).

Then theasynchronous parallel compositiar these components is defined by
ieﬁ((Sk,Tk,Fk,MOk,ﬁk),Ik,Ok) = ((S,T, F, My, ?),1,0)

With S=Upc s Skr T=UkeaThs F=UgeaFk, Mo=2 e aMok, 1= Uyealr (cOM-
ponentwise union of all netsj=J, . ; Ix (we accept additional inputs from outside),
andO= ¢ s Ok \ Uy Ir (once fused with an inpud,€ Oy is no longer an output).

Observation 1. || is associative.

This follows directly from the associativity of the (mukgt union operator. a
We are now ready to define the class of nets representingnsysieasynchronously
communicating sequential components.

Definition 12. A PetrinetV is anLSGA nefalocally sequential globally asynchronous
nel) iff there exists an index set and sequential components with interfaie k € &,
such tha{N, I, O) = ||xexCy, for somel andO.

On Distributability of Petri Nets 7

Up to beSTb—or any reasonable equivalence preserving causality aamthing time
but abstracting from internal activity—the same class 0GIASsystems would have
been obtained if we had imposed, in Oefl 10, tha® and@ form a partition ofS and
that®7 = (). However, it is essential that our definition allows mukiptansitions of a
component to read from the same input place.

In the remainder of this section we give a more abstract cltevigation of Petri nets
representing distributed systems, namelgiafibutedPetri nets, which we introduced
in [5]. This will be useful in Sectiofl4, where we investigdistributability using this
more semantic characterisation. We show below that theretcharacterisation of
distributed systems as LSGA nets and this abstract chaisatten agree.

Following [1], to arrive at a class of nets representingritisted systems, we as-
sociatelocalities to the elements of a ne¥ = (5,7, F, My, ¢). We model this by a
function D : SUT — Loc, with Loc a set of possible locations. We refer to such a
function as aistributionof N. Since the identity of the locations is irrelevant for our
purposes, we can just as well abstract from Loc and reprd3dnt the equivalence
relation=p on S U T given byz =p y iff D(z) = D(y).

Following [5], we impose a fundamental restriction on disttions, namely that
when two transitions can occur in one step, they cannot Heaaded. This reflects our
assumption that at a given location actions can only ocayuresatially.

In [5] we observed that Petri nets incorporate a notion othyonous interaction,
in that a transition can fire only by synchronously taking tbkens from all of its
preplaces. In general the behaviour of a net would changeadadif a transition would
take its input tokens one by one—in particular deadlocks beayntroduced. Therefore
we insist that in a distributed Petri net, a transition aridtglinput places reside on
the same location. There is no reason to require the samédooutput places of a
transition, for the behaviour of a net would not change sigatly if transitions were
to deposit their output tokens one by ohk [5].

This leads to the following definition of a distributed Peteit.

Definition 13 ([5]). A Petri netN = (S, T, F, My, ¢) is distributediff there exists a
distribution D such that

QD VvVseS, teT.set=t=ps,

2) Vt,bueT.t —u=1t#p u.
N is essentially distributed (2) is weakened t&'t, ueT. t — uAl(t) # T =t Zp u.

A typical example of a net which is not distributed is showrrig.[d on Paggl9. Tran-
sitionst andw are concurrently executable and hence should be placedferedi lo-
cations. However, both have preplaces in common witvhich would enforce putting
all three transitions on the same location. In fact, digtell nets can be characterised
in the following semi-structural way.

Observation 2. A Petri net is distributed iff there is no sequenge. .., t, of transi-
tions withty — ¢, and®t;_1N°t; #A0fori=1,...,n. O

It turns out that the classes of LSGA nets and distributabls essentially coincide.
Moreover, up tox{y, these classes also coincide with the more liberal notiorsef e
sentially distributed nets, permitting concurrency oéimal transitions at the same lo-
cation. We will make use of that in proving our main theorem.

8 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

Theorem 1. Any LSGA net is distributed, and for any essentially distlol netN
there is an LSGA neV’ with N’ ~£y,, N.

Proof. In the full version of this papel [6]. a
Observation 3. Every distributed Petri net is a structural conflict net. a
Corollary 1. Every LSGA net is a structural conflict net. a0

4 Distributable Systems

We now consider Petri nets as specifications of concurretésys and ask the question
which of those specifications can be implemented as diséibsystems. This question
can be formalised as

Which Petri nets are semantically equivalent to distriloLiets?

Of course the answer depends on the choice of a suitable Seragnivalence. Here

we will answer this question using the two equivalencesihiced in Sectiofl2. We

will give a precise characterisation of those nets for whighcan find semantically

equivalent distributed nets. For the negative part of thigracterisation, stating that
certain nets are not distributable, we will use step readimguivalence, which is one
of the simplest and least discriminating equivalences irmage that abstracts from
internal actions, but preserves branching time, concoyemd divergence to some
small degree. As explained ial[5], giving up on any of thedeetathree properties

would make any Petri net distributable, but in a rather atignd unsatisfactory way.

For the positive part, namely that all other nets are indéstdiloutable, we will use the

most discriminating equivalence for which our implemeiotatvorks, namely branch-

ing ST-bisimilarity with explicit divergence, which is finéhan step readiness equiv-
alence. Hence we will obtain the strongest possible re$mittboth directions and it

turns out that the concept of distributability is fairly teti w.r.t. the choice of a suitable
equivalence: any equivalence notion between step read@mgsvalence and branching
ST-bisimilarity with explicit divergence will yield the sae characterisation.

Definition 14. A Petri netNV is distributableup to an equivalence: iff there exists a
distributed netV’ with N" ~ N.

Formally we give our characterisation of distributability classifying which finitary
plain structural conflict nets can be implemented as disteithnets, and hence as LSGA
nets. In such implementations, we use invisible transstiée study the concept “dis-
tributable” for plain nets only, but in order to get the lasgelass possible we allow
non-plain implementations, where a given transition magté into multiple transi-
tions carrying the same label.

It is well known that sometimes a global protocol is necessaiimplement syn-
chronous interaction present in system specificationsattiqular, this may be needed
for deciding choices in a coherent way, when these choigpsneagreement of mul-
tiple components. The simple net in Hig. 1 shows a typicabsion of this kind. Inde-

On Distributability of Petri Nets 9

pendent decisions of the two choices might lead (o) » oYX
to a deadlock. As remarked inl[5], for this par-
ticular net there exists no satisfactory distributed
implementation that fully respects the reactive
behaviour of the original system. Indeed such
M-structures, representing interference between
concurrency and choice, turn out to play a cru- Fig. 1. A fully marked M.
cial role for characterising distributability.

Definition 15. Let N = (S, T, F, My, ¢) be a Petri netV has &ully reachable purev
iff 3t,u,v € T.2tN%u #£ QA uN®v £ QAtN®v = DATM € [Mp).*tUuU®v C M.

Note that Definition 15 implies that£ v, v # v andt # v.

We now give an upper bound on the class of distributable neglbpting a result
from [5].

Theorem 2. Let N be a plain structural conflict Petri net. IV has a fully reachable
pureM, thenN is not distributable up to step readiness equivalence.

Proof. In [5] this theorem was obtained for plain one-safe Aethe proof applies
verbatim to plain structural conflict nets as well. a

Since~ty, is finer thanr 4, this result holds also for distributability up tety,, (and
any equivalence betweeny, and~:y,).

In the following, we establish that this upper bound is tjgitd hence a finitary
plain structural conflict net is distributable iff it has ndlf reachable pur#. For this,
it is helpful to first introduce macros in Petri nets for resibility of transitions.

4.1 Petri nets with reversible transitions

A Petri net with reversible transitiongeneralises the notion of a Petri net; its se-
mantics is given by a translation to an ordinary Petri nedrahy interpreting the re-
versible transitions as syntactic sugar for certain nejrfrants. It is defined as a tuple
(S, T, 02,1, F, My, ¢) with S a set of places]" a set of (reversible) transitions, labelled
by ¢: T — Act U {r}, 2 a set ofundo interfacesvith the relation C 2 x T linking
interfaces to transitionsy/, € IN® an initial marking, and

F: (S x T x {in, early, late, out, far} — H\T)

the flow relation. Fot € T andtype € {in, early, late, out, far }, the multiset of places
ttype ENS is given byttype (S) = F(S, t, type). Whens etre for type € {in, early, late},
the places is called apreplaceof ¢ of typetype whens € t%P¢ for wype € {out, far},

s is called apostplaceof ¢ of typetype For each undo interface € (2 and transitiort
with 1(w, t) there must be placasdo,(¢), reset, (¢t) andack,(t) in S. A transition
with a nonempty set of interfaces is callexVersible the other §tandarg transitions
may have pre- and postplaces of typeandout only—for these transitions™ = *t and
tout =¢*. In casef? = (), the net is just a normal Petri net.

% n [5] the theorem was claimed and proven only for plain neith & fully reachablevisible
pureM; however, for plain nets the requirement of visibility issilevant.

10 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

A global state of a Petri net with reversible transitionsiieg by a markingy/ €IN*
together with the state of each reversible transition ‘eatly in progress”. Each tran-
sition in the net can fire as usual. A reversible transitiamwareover take back (some
of) its output tokens, and bendoneandreset When a transitiort fires, it consumes
2 typeciin, early, late} £ (5,1, tupe) tokens from each of its preplacesand produces
2 typeciout, fary L' (8,1, tupe) tokens in each of its postplacesA reversible transition
t that has fired can start its reversal by consuming a token émwho,, (¢) for one of its
interfacesv. Subsequently, it can take back one by one a token from itplaees of
typefar. After it has retrieved all its output of type, the transition is undone, thereby
returningF'(s, t, early) tokens in each of its preplacesf typeearly. Afterwards, by con-
suming a token fromeset,, (t), for the same interface that started the undo-process,
the transition terminates its chain of activities by retngF'(s, ¢, iate) tokens in each
of its late preplaces. At that occasion it also produces a tokemak,, (¢). Alternatively,
two tokens inundo,, (t) andreset,, (¢) can annihilate each other without involving the
transitiont; this also produces a tokenaick,, (¢). The latter mechanism comes in action
when trying to undo a transition that has not yet fired.

Fig.[2 shows the translation of a reversible transitiomith ¢(¢) = « into a ordi-
nary net fragment. The arc weights on the green (or grey)aeiherited from the
untranslated net; the other arcs have weight 1.

(late) (early)
undo,,(
reset
(far) ack
(out)
Vi€t g Vi € thate | e Veegtowly

t- fire/O t - reset, Q
t

t - elide,,

6
M)

) fired(t)

T
t -undo,, \Q

take(f,t) ¢ - undo(f) took(f, t)

Vf e tfr

7T | t-undone

[+]

Fig. 2. A reversible transition and its macro expansion.

On Distributability of Petri Nets 11

4.2 The conflict replicating implementation

Now we establish that a finitary plain structural conflict tiett has no fully reachable
pureM is distributable. We do this by proposing tbenflict replicating implementation
of any such net, and show that this implementation is alwaysgsentially distributed,
and (b) equivalent to the original net. In order to get thersgest possible result, for
(b) we use branching ST-bisimilarity with explicit divergze.

To define the conflict replicating implementation of a Aet= (S, T, F, My, ¢) we
fix an arbitrary well-orderingc on its transitions. We lét, ¢, h, i, j, k, [range over these
ordered transitions, and write

— a#5iff i£jA%iN®j#£((transitions andj arein conflic), andiij iff i#jVvi=j,

—i<#jiff i< jNi# g, andi <Fjiff i <#FjVvi=j.
Fig.[3 shows the conflict replicating implementatidi It is presented as a Petri net
IZ(N) = (ST, F', 2,1, M}, ') with reversible transitions. The sét of undo inter-
faces (not drawn) i¥', and forie 2 we hava(i, t) iff t(2;, where the sets of transitions
02; € N7 are specified in Fig.13. The implementatiéNV) inherits the places oV
(i.e. S’ 2 S), and we postulate that/)|S = M. Given this, Fig[B is not merely
an illustration ofZ(N)—it provides a complete and accurate description of it,ehwgr
defining the conflict replicating implementation of any netinterpreting this figure
it is important to realise that net elements are completelgminined by their name
(identity), and exist only once, even if they show up muétiimes in the figure. For
instance, the place,; with h=2 andj=>5 (when using natural numbers for the transi-
tionsinT) is the same as the plaggy; with j=2 andi=5; it is a standard preplace of
execute) (for all i <#2), a standard postplace fetched’, as well as a late preplace
of transfer;.

The role of the transitiondistribute,, for p € S is to distribute a token ip to copies
p; of p in the localities of all transitiong € 7" with p € *j. In casej is enabled inV,
the transitionnitialise ; will become enabled i@ (V). These transitions put tokens in
the placepre?, WhICh are preconditions for all transmoazecutek, which model the
execution ofj at the location ofc. When two conflicting transitions andj are both
enabled inV, the first stepsnitialise;, andinitialise; towards their execution ifi(V')
can happen in parallel. To prevent them from executing tmtbcuteﬂ (of 7 at its own
location) is only possible afteransfer which disablegxecute]..

The main idea behind the confhct replicating implementai® that a transition
heT is primarily executed by a sequential component of its owwihen a conflicting
transitionj gets enabled, the sequential component implementintay “steal” the
possibility to executér from the home component déf, and keep the options to do
h and;j open until one of them occurs. To prevénand; from stealing each other’s
initiative, which would result in deadlock, a global asyntrgés built in by ordering
the transitions. Transitiofcan steal the initiative fromh only whenh < j.

In casej is also in conflict with a transitioh, with j < [, the initiative to perform
j may subsequently be stolen hyin that case eithées and/ are in conflict too—then
[takes responsibility for the execution afas well—orh and! are concurrent—in
that caseh will not be enabled, due to the absence of fully reachable plgin N.
The absence of fully reachable puvis also guarantees that it cannot happen that two
concurrent transitiong andk both steal the initiative from an enabled transition

12 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

p

distribute,,

pj

o : VjeT
F(p,j) /@ j Vp e
Vh <# j

initialise;; Vi <#]

; vk ># j
. pre;, VI >#
Yq € *
Ve e ¢°
Vread®
Vit € 0, = {initialise, | ¢ £ i} +
{transfer’ | b <# ¢ £}

O fetch? -in
undo,(t)
@ . F(q,1)

reset;(t) () () ack;(t)

finalise’

F(i,r)

O

Fig. 3. The conflict replicating implementation

On Distributability of Petri Nets 13

After the firing ofexecute§ all tokens that were left behind in the process of care-
fully orchestrating this firing will have to be cleaned upprepare the net for the next
activity in the same neighbourhood. This is the reason feréversibility of the tran-
sitions preparing the firing axecute;. Hence there is an undo interface for each tran-
sitioni € T”, cleaning up the mess made in preparation of frengcute for somej.

§2; is the multiset of all transitions that could possibly have contrlbuted to this. For
each of them its interfaceis activated, byexecute7 depositing a token imndo; (¢).
When all preparatory transitions that have fired are undwfens appear in the places
p. for all p e ®i andc € p°®. These are collected Hptchp’ after which allt € (2; get

a reset signal. Those that have fired and were undone are aesethose that never
fired performelide;(t). In either case a token appearsaick; (¢). These are collected
by finalise’, which finishes the execution oby depositing tokens in its postplaces.

Proposition 1. Z(N) is essentially distributed for every Petri nit

Proof sketchWe take thecanonicaldistribution D of NV, in which=p, is the equiva-
lence relation on places and transitigeneratedy Condition (1) of Definitiof 113. We
need to show thab satisfies the weakened Condition 2. Any location that haiban
external transitioexecute’; for somei < j € 7", also harbouraitialise ;-undo(pre}),
transfer -undo(trans” out) forall h<# j, execute) forall i <# j, and, for alll S# 7,
transferj fire andlnrtralrsel -undo(transj-in). In ﬂEﬂ we show that none of these tran-
sitions can happen concurrently Wehecutej [

Theorem 3. Let V be a finitary plain structural conflict net without a fully relaable
pureM. Thenh is distributable up tovsy .

Proof. In the full version of this papel [6]. There we show tiZ4fV) beSTb N. Hence
Z(N) is a essentially distributed implementation/éf Now apply Theorerfil1. a

Given the complexity of our construction, no techniquesvimdo us were adequate
for performing this proof. We therefore had to develop arirelyt new method for
rigorously proving the equivalence of two Petri nets up4g,,,, one of which known
to be plain. This method is presented[ih [6].

Corollary 2. Let N be a finitary plain structural conflict net. TheX is distributable
iff it has no fully reachable puri. a

5 Conclusion

In this paper, we have given a precise characterisatiorstilditable Petri nets in terms
of a semi-structural property. Moreover, we have showndhanotion of distributabil-
ity corresponds to an intuitive notion of a distributed systby establishing that any
distributable net may be implemented as a network of asymehusly communicating
components.

In order to formalise what qualifies as a valid implementatiwe needed a suitable
equivalence relation. We have chosen step readiness &noegor showing the impos-
sibility part of our characterisation, since it is one of gi@plest and least discriminat-
ing semantic equivalences imaginable that abstracts fintenrial actions but preserves

14 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

branching time, concurrency and divergence to some smgliede For the positive
part, stating that all other nets are implementable, we hx@duced a combination of
several well known rather discriminating equivalencesnely a divergence sensitive
version of branching bisimulation adapted to ST-semanitiesice our characterisation
is rather robust against the chosen equivalence; it holticirfor all equivalences be-
tween these two notions. However, ST-equivalence (andensian of it) preserves the
causal structure between action occurrences only as facans be expressed in terms
of the possibility of durational actions to overlap in tintéence a natural question
is whether we could have chosen an even stronger causaiisitise equivalence for
our implementability result, respecting e.g. pomset emjaivce or history preserving
bisimulation. Our conflict replicating implementation da®t fully preserve the causal
behaviour of nets; we are convinced we have chosen the stsbpgssible equiva-
lence for which our implementation works. It is an open peobko find a class of nets
that can be implemented distributedly while preservingdjence, branching time and
causality in full. Another line of research is to investigathich Petri nets can be imple-
mented as distributed nets when relaxing the requiremepitesferving the branching
structure. If we allow linear time correct implementatiqnsing a step trace equiva-
lence), we conjecture that all Petri nets become distriliatdiowever, also in this case
it is problematic, in fact even impossible in our settingpteserve the causal structure,
as has been shown in[14]. A similar impossibility result haen obtained in the world
of ther-calculus in[[12].

The interplay between choice and synchronous communichtis already been
investigated in quite a number of approaches in differearheworks. We refer td 5]
for a rather comprehensive overview and concentrate herecemt and closely related
work.

The idea of modelling asynchronously communicating setjglecomponents by
sequential Petri nets interacting though buffer placesat@ady been considered in
[13]. There Wolfgang Reisig introduces a class of systeesasented as Petri nets,
where the relative speeds of different components are gtesd to be irrelevant. His
class is a strict subset of our LSGA nets, requiring additiignamongst others, that
all choices in sequential components are free, i.e. do etk upon the existence of
buffer tokens, and that places are output buffers of onlyammeponent. Another quite
similar approach was taken in|[3], where transition labetscdassified as being either
input or output. There, asynchrony is introduced by addiag buffer places during net
composition. This framework does not allow multiple seisder a single receiver.

Other notions of distributed and distributable Petri neesoposed in [9]1]2]. In
these works, given a distribution of the transitions of g tiet net is distributable iff it
can be implemented by a net that is distributed w.r.t. thettibution. The requirement
that concurrent transitions may not be co-located is abgamn the fixed distribution,
there is no need for such a requirement. These papers differéach other, and from
ours, in what counts as a valid implementation. A comparafaur criterion with that
of Hopkins [9] is provided in[[5].

In [5] we have obtained a characterisation similar to CargllZ, but for a much
more restricted notion of distributed implementatipta({n distributability), disallow-
ing nontrivial transition labellings in distributed impleentations. We also proved that
fully reachable purdis are not implementable in a distributed way, even when using

On Distributability of Petri Nets 15

transition labels (Theoren 2). However, we were not abl&ééwsthat this upper bound
on the class of distributable systems was tight. Our cusenk implies the validity of
Conjecture 1 ofi[b]. While in[5] we considered only one-spliéce/transition systems,
the present paper employs a more general class of plagfioansystems, namely
structural conflict nets. This enables us to give a concrleeacterisation of distributed
nets as systems of sequential components interacting nisai@ buffer places.

References

1. E. Badouel, B. Caillaud & P. Darondeau (20Mjstributing Finite Automata Through Petri
Net SynthesisFormal Aspects of Computint3(6), pp. 447-470.

2. E. Best & Ph. Darondeau (201 Betri Net Distributability In: Proceedings Ershov Infor-
matics Conference (PSI’11), Novosibirsk, Rus&ilCS, Springer. To appear.

3. D. El Hog-Benzina, S. Haddad & R. Hennicker (201B)yocess Refinement and Asyn-
chronous Composition with Modalitieln N. Sidorova & A. Serebrenik, editors: Proceedings
of the 2nd International Workshop @bstractions for Petri Nets and Other Models of Con-
currenc){APNOC'10), Braga, Portugal. Available fattp://www.Isv.ens-cachan.
fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf

4. R.J.van Glabbeek, U. Goltz & J.-W. Schicke (20]Albstract Processes of Place/Transition
Systems Information Processing Lettetd 1(13), pp. 626 — 633, ddi0.1016/.ipl.
2011.03.013 .

5. R.J. van Glabbeek, U. Goltz & J.-W. Schicke (2008y1 Synchronous and Asynchronous
Interaction in Distributed Systems$n E. Ochmanski & J. Tyszkiewicz, editorMathemat-
ical Foundations of Computer Science 2008ICS 5162, Springer, pp. 16-35, dd.
1007/978-3-540-85238-4 2 . Full version available as Technical Report 2008-03,
TU-Braunschweighttp://arxiv.org/abs/0901.0048

6. R.J. van Glabbeek, Goltz U & J.-W. Schicke-Uffmann (2013:) Distributability of Petri
Nets Technical Report 2011-10, TU Braunschweig. Availablentp://theory.
stanford.edu/ ~ rvg/abstracts.html#95 . Full version of this paper, to appear.

7. R.J. van Glabbeek & F.W. Vaandrager (1987¢tri net models for algebraic theories of
concurrency (extended abstracth: Proc.PARLE '87, LNCS 259, Springer, pp. 224-242.

8. R.J.van Glabbeek & W.P. Weijland (199B8yanching Time and Abstraction in Bisimulation
SemanticsJournal of the ACMA3(3), pp. 555-600, ddi0.1145/233551.233556 |

9. R.P. Hopkins (1991)Distributable nets In: Advances in Petri Nets 1991 NCS 524,
Springer, pp. 161-187, d&i0.1007/BFb0019974

10. R. Milner (1989)Communication and Concurrencrentice Hall, Englewood Cliffs.

11. E.-R. Olderog & C.A.R. Hoare (1986¥pecification-oriented semantics for communicating
processesActa Informatica23, pp. 9—66, doi:0.1007/BF00268075

12. K. Peters, J.-W. Schicke & U. Nestmann (20Bynchrony vs Causality in the Asynchronous
Pi-Calculus In B. Luttik & F. Valencia, editors: Proceedings 18th Imational Workshop
on Expressiveness in Concurrené&yachen, Germany, 5th September 20&Electronic Pro-
ceedings in Theoretical Computer Scieode pp. 89-103, dal0.4204/EPTCS.64.7

13. W. Reisig (1982)Deterministic Buffer Synchronization of Sequential Pss&s Acta Infor-
matical8, pp. 115-134, ddi0.1007/BF00264434 .

14. J.-W. Schicke, K. Peters & U. Goltz (2018ynchrony vs. Causality in Asynchronous Petri
Nets In B. Luttik & F. Valencia, editors: Proceedings 18th Imational Workshop orx-
pressiveness in Concurrendachen, Germany, 5th September 20Electronic Proceed-
ings in Theoretical Computer Sciengé, pp. 119-131, ddi0.4204/EPTCS.64.9

15. W. Vogler (1993)Bisimulation and Action RefinemenfTheor. Comput. Scil14(1), pp.
173-200, doit0.1016/0304-3975(93)90157-O

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf
http://dx.doi.org/10.1016/j.ipl.2011.03.013
http://dx.doi.org/10.1016/j.ipl.2011.03.013
http://dx.doi.org/10.1007/978-3-540-85238-4_2
http://dx.doi.org/10.1007/978-3-540-85238-4_2
http://arxiv.org/abs/0901.0048
http://theory.stanford.edu/~rvg/abstracts.html#95
http://theory.stanford.edu/~rvg/abstracts.html#95
http://dx.doi.org/10.1145/233551.233556
http://dx.doi.org/10.1007/BFb0019974
http://dx.doi.org/10.1007/BF00268075
http://dx.doi.org/10.4204/EPTCS.64.7
http://dx.doi.org/10.1007/BF00264434
http://dx.doi.org/10.4204/EPTCS.64.9
http://dx.doi.org/10.1016/0304-3975(93)90157-O

	On Distributability of Petri Nets

