
On Distributability of Petri Nets
(extended abstract)⋆

Rob van Glabbeek1,2, Ursula Goltz3 and Jens-Wolfhard Schicke-Uffmann3

1 NICTA, Sydney, Australia
2 School of Computer Sc. and Engineering, University of New South Wales, Sydney, Australia

3 Institute for Programming and Reactive Systems, TU Braunschweig, Germany

rvg@cs.stanford.edu goltz@ips.cs.tu-bs.de drahflow@gm x.de

Abstract. We formalise a general concept of distributed systems as sequential
components interacting asynchronously. We define a corresponding class of Petri
nets, called LSGA nets, and precisely characterise those system specifications
which can be implemented as LSGA nets up to branching ST-bisimilarity with
explicit divergence.

1 Introduction

The aim of this paper is to contribute to a fundamental understanding of the concept
of a distributed reactive system and the paradigms of synchronous and asynchronous
interaction. We start by giving an intuitive characterisation of the basic features of dis-
tributed systems. In particular we assume that distributedsystems consist of compo-
nents that reside on different locations, and that any signal from one component to an-
other takes time to travel. Hence the only interaction mechanism between components
is asynchronous communication.

Our aim is to characterise which system specifications may beimplemented as dis-
tributed systems. In many formalisms for system specification or design, synchronous
communication is provided as a basic notion; this happens for example in process alge-
bras. Hence a particular challenge is that it may be necessary to simulate synchronous
communication by asynchronous communication.

Trivially, any system specification may be implemented distributedly by locating
the whole system on one single component. Hence we need to pose some additional re-
quirements. One option would be to specify locations for system activities and then to
ask for implementations satisfying this distribution and still preserving the behaviour of
the original specification. This is done in [1]. Here we pursue a different approach. We
add another requirement to our notion of a distributed system, namely that its compo-
nents only allow sequential behaviour. We then ask whether an arbitrary system specifi-
cation may be implemented as a distributed system consisting of sequential components
in an optimal way, that is without restricting the concurrency of the original specifica-
tion. This is a particular challenge when synchronous communication interacts with
concurrency in the specification of the original system. We will give a precise charac-
terisation of the class of distributable systems, which answers in particular under which
conditions synchronous communication may be implemented in a distributed setting.
⋆ This work was partially supported by the DFG (German Research Foundation).

2 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

For our investigations we need a model which is expressive enough to represent con-
currency. It is also useful to have an explicit representation of the distributed state space
of a distributed system, showing in particular the local control states of components.
We choose Petri nets, which offer these possibilities and additionally allow finite repre-
sentations of infinite behaviours. We work within the class of structural conflict nets[4]
—a proper generalisation of the class of one-safe place/transition systems, where con-
flict and concurrency are clearly separated.

For comparing the behaviour of systems with their distributed implementation we
need a suitable equivalence notion. Since we think of open systems interacting with
an environment, and since we do not want to restrict concurrency in applications, we
need an equivalence that respects branching time and concurrency to some degree.
Our implementations use transitions which are invisible tothe environment, and this
should be reflected in the equivalence by abstracting from such transitions. However,
we do not want implementations to introduce divergence. In the light of these require-
ments we work with two semantic equivalences.Step readiness equivalenceis one of
the weakest equivalences that captures branching time, concurrency and divergence to
some degree; whereasbranching ST-bisimilarity with explicit divergencefully captures
branching time, divergence, and those aspects of concurrency that can be represented
by concurrent actions overlapping in time. We obtain the same characterisation for both
notions of equivalence, and thus implicitly for all notionsin between these extremes.

We model distributed systems consisting of sequential components as an appropri-
ate class of Petri nets, calledLSGA nets. These are obtained by composing nets with
sequential behaviour by means of an asynchronous parallel composition. We show that
this class corresponds exactly to a more abstract notion of distributed systems, for-
malised asdistributed nets[5].

We then consider distributability of system specificationswhich are represented as
structural conflict nets. A netN is distributableif there exists a distributed implementa-
tion of N , that is a distributed net which is semantically equivalentto N . In the imple-
mentation we allow unobservable transitions, and labellings of transitions, so that single
actions of the original system may be implemented by multiple transitions. However,
the system specifications for which we search distributed implementations areplain
nets without these features.

We give a precise characterisation of distributable nets interms of a semi-structural
property. This characterisation provides a formal proof that the interplay between choice
and synchronous communication is a key issue for distributability.

2 Basic Notions

We consider here general labelled place/transition nets with arc weights. Arc weights
are not necessary for the results of the paper, but are included for the sake of generality.

We will employ the following notations for multisets.

Definition 1. Let X be a set.
– A multisetoverX is a functionA : X → IN, i.e.A ∈ INX .
– x ∈ X is anelement ofa multisetA ∈ INX , notationx ∈ A, iff A(x) > 0.
– For multisetsA andB overX we writeA ≤ B iff A(x) ≤ B(x) for all x ∈X ;

On Distributability of Petri Nets 3

A+B denotes the multiset overX with (A+B)(x) := A(x) +B(x),
A\B denotes the multiset overX with (A−B)(x) := max(A(x)−B(x), 0), and
for k ∈ IN the multisetk ·A is given by(k ·A)(x) := k ·A(x).

– The function∅ : X → IN, given by∅(x) := 0 for all x ∈X , is theemptymultiset.
– If A is a multiset overX andY ⊆ X thenA ↾Y denotes the multiset overY

defined by(A ↾ Y)(x) := A(x) for all x ∈ Y .
– The cardinality|A| of a multisetA overX is given by|A| :=

∑

x∈X A(x).
– A multisetA overX is finite iff {x | x ∈ A} is finite, i.e., iff |A| < ∞.

Two multisetsA :X→IN andB :Y→IN areextensionally equivalentiff A ↾(X\Y)=∅,
B ↾(Y \X)=∅, andA ↾(X∩Y)=B ↾(X∩Y). In this paper we often do not distinguish
extensionally equivalent multisets. This enables us, for instance, to useA+B even when
A andB have different underlying domains.

A multisetA with A(x) ∈ {0, 1} for all x is identified with the set{x | A(x) = 1}.

Definition 2. Let Act be a set ofvisible actionsandτ 6∈ Act be aninvisible action.
A (labelled) Petri net(overAct

.
∪ {τ}) is a tupleN = (S, T, F,M0, ℓ) where

– S andT are disjoint sets (ofplacesandtransitions),
– F : (S × T ∪ T × S) → IN (theflow relationincludingarc weights),
– M0 : S → IN (the initial marking), and
– ℓ : T → Act

.
∪ {τ} (the labelling function).

Petri nets are depicted by drawing the places as circles and the transitions as boxes,
containing their label. Identities of places and transitions are displayed next to the net
element. WhenF (x, y) > 0 for x, y ∈ S ∪ T there is an arrow (arc) from x to y,
labelled with thearc weightF (x, y). Weights 1 are elided. When a Petri net represents
a concurrent system, a global state of this system is given asamarking, a multisetM of
places, depicted by placingM(s) dots (tokens) in each places. The initial state isM0.

To compress the graphical notation, we also allow universalquantifiers of the form
∀x.φ(x) to appear in the drawing (cf. Fig. 3). A quantifier replaces occurrences ofx
in element identities with all concrete values for whichφ(x) holds, possibly creating
a set of elements instead of the depicted single one. An arc ofwhich only one end is
replicated by a given quantifier results in a fan of arcs, one for each replicated element.
If both ends of an arc are affected by the same quantifier, an arc is created between
pairs of elements corresponding to the samex, but not between elements created due to
differing values ofx.

The behaviour of a Petri net is defined by the possible moves between markingsM
andM ′, which take place when a finite multisetG of transitionsfires. In that case, each
occurrence of a transitiont in G consumesF (s, t) tokens from each places. Naturally,
this can happen only ifM makes all these tokens available in the first place. Next, each
t producesF (t, s) tokens in eachs. Definition 4 formalises this notion of behaviour.

Definition 3. Let N = (S, T, F,M0, ℓ) be a Petri net andx ∈ S ∪ T .
The multisets•x, x• : S∪T → IN are given by•x(y) = F (y, x) andx•(y) = F (x, y)
for all y ∈ S ∪ T . If x ∈ T , the elements of•x andx• are calledpre- andpostplaces
of x, respectively. These functions extend to multisetsX : S ∪ T → IN as usual, by
•X :=

∑

x∈S∪T X(x) · •x andX• :=
∑

x∈S∪T X(x) · x•.

4 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

Definition 4. LetN =(S, T, F,M0, ℓ) be a Petri net,G∈ INT, G non-empty and finite,
andM,M ′ ∈ INS. G is astepfrom M to M ′, writtenM [G〉N M ′, iff •G ⊆ M (G is
enabled) andM ′ = (M \ •G) +G•.

Note that steps are (finite) multisets, thus allowing self-concurrency, i.e. the same tran-
sition can occur multiple times in a single step.

In our nets transitions are labelled withactionsdrawn from a set Act
.
∪ {τ}. A

transitiont can be thought of as the occurrence of the actionℓ(t). If ℓ(t) ∈ Act, this oc-
currence can be observed and influenced by the environment, but if ℓ(t) = τ , it cannot
andt is aninternalor silent transition. Transitions whose occurrences cannot be distin-
guished by the environment carry the same label. In particular, since the environment
cannot observe the occurrence of internal transitions at all, they are all labelledτ .

To simplify statements about behaviours of nets, we use someabbreviations.

Definition 5. Let N = (S, T, F,M0, ℓ) be a Petri net.
We writeM1

α
−→N M2, for α ∈ Act

.
∪ {τ}, when∃ t ∈ T. α= ℓ(t) ∧M1 [{t}〉N M2.

Furthermore, fora1a2 · · · an ∈ Act∗ we writeM1
a1a2···an======⇒N M2 when

M1 =⇒N
a1−→N=⇒N

a2−→N=⇒N · · · =⇒N
an−→N=⇒N M2

where=⇒N denotes the reflexive and transitive closure of
τ

−→N .
Forα ∈ Act

.
∪ {τ}, we writeM1

(α)
−→N M2 for M1

α
−→N M2 ∨ (α = τ ∧M1 = M2),

meaning that in caseα = τ performing aτ -transition is optional. We writeM1
α
−→N

for ∃M2.M1
α

−→N M2, andM1 X

α
−→N for ∄M2.M1

α
−→N M2. LikewiseM1[G〉N

abbreviates∃M2.M1[G〉NM2. We omit the subscriptN if clear from context.

Definition 6. Let N = (S, T, F,M0, ℓ) be a Petri net.

– A markingM ∈ INS is said to bereachable inN iff there is aσ ∈ Act∗ such that
M0

σ
=⇒N M . The set of allreachable markings ofN is denoted by[M0〉N .

– N is one-safeiff M ∈ [M0〉N ⇒ ∀x ∈ S.M(x) ≤ 1.
– Theconcurrency relation⌣ ⊆ T 2 is given byt ⌣ u ⇔ ∃M ∈ [M0〉.M [{t, u}〉.
– N is astructural conflict netiff for all t, u ∈ T with t ⌣ u we have•t ∩ •u = ∅.

We use the termplain netsfor Petri nets whereℓ is injective and no transition has the
labelτ , i.e. essentially unlabelled nets.

This paper first of all aims at studying finite Petri nets: netswith finitely many places
and transitions. However, our work also applies to infinite nets with the properties that
•t 6= ∅ for all transitionst ∈ T , and any reachable marking (a) is finite, and (b) enables
only finitely many transitions. Henceforth, we call such nets finitary. Finitariness can
be ensured by requiring|M0|<∞∧ ∀t ∈ T. •t 6= ∅ ∧ ∀x ∈ S ∪ T. |x•| < ∞.

We use the following variant of readiness semantics [11] to compare behaviour.

Definition 7. Let N = (S, T, F,M0, ℓ) be a Petri net,σ ∈ Act∗ andX ⊆ INAct.
〈σ,X〉 is astep ready pairof N iff

∃M.M0
σ

=⇒ M ∧M X

τ
−→ ∧X = {ℓ(G) | M [G〉}.

Here we extend the labelling functionℓ to finite multisets of transitions elementwise.
We writeR(N) for the set of all step ready pairs ofN .
Two Petri netsN1 andN2 arestep readiness equivalent,N1≈RN2, iff R(N1)=R(N2).

On Distributability of Petri Nets 5

ST-bisimilaritywas proposed in [7] as a non-interleaved version of bisimilarity that
respects causality to the extent that it can be expressed in terms of the possibility of
durational actions to overlap in time. It was extended to a setting with internal actions
in [15], based on the notion ofweak bisimilarityof [10]. Here we apply the same idea,
but based onbranching bisimilarity[8], which unlike weak bisimilarity fully respects
the branching structure of related systems.

An ST-markingof a netN=(S, T, F,M0, ℓ) is a pair(M,U)∈INS×T ∗ of a normal
marking, together with a sequence of transitionscurrently firing. Theinitial ST-marking
is M0 := (M0, ε). The elements of Act± := {a+, a−n | a ∈ Act, n > 0} are called
visible action phases, andAct±τ := Act±

.
∪ {τ}. ForU ∈ T ∗, we writet ∈(n) U if t is

thenth element ofU . FurthermoreU−n denotesU after removal of thenth transition.

Definition 8. Let N = (S, T, F,M0, ℓ) be a Petri net, labelled over Act
.
∪ {τ}.

TheST-transition relations
η

−→ for η ∈ Act±τ between ST-markings are given by
(M,U)

a+

−→ (M ′, U ′) iff ∃t ∈ T. ℓ(t) = a ∧M [{t}〉 ∧M ′ = M − •t ∧ U ′ = Ut.
(M,U)

a−n

−−→ (M ′, U ′) iff ∃t ∈(n) U. ℓ(t) = a ∧ U ′ = U−n ∧M ′ = M + t•.
(M,U)

τ
−→ (M ′, U ′) iff M

τ
−→ M ′ ∧ U ′ = U .

Now branching ST-bisimilarityis branching bisimilarity[8], applied to the labelled
transition system made up of ST-markings of nets and the ST-transitions between them.

Definition 9. Two Petri netsN1 andN2 arebranching ST-bisimilariff there exists a
relationR between the ST-markings ofN1 andN2 such that, for allη ∈ Act±τ :
1. M01RM02;
2. if M1RM2 andM1

η
−→ M

′
1 then∃M†

2,M
′
2 such that

M2 =⇒ M
†
2

(η)
−→ M

′
2, M1RM

†
2 andM′

1RM
′
2;

3. if M1RM2 andM2
η

−→ M
′
2 then∃M†

1,M
′
1 such that

M1 =⇒ M
†
1

(η)
−→ M

′
1, M

†
1RM2 andM′

1RM
′
2.

If a system has the potential to engage in an infinite sequenceof internal actions, one
speaks ofdivergence. Branching bisimilaritywith explicit divergence[8], is a variant
of branching bisimilarity that fully respects the diverging behaviour of related systems.
Since here we only compare systems of which one admits no divergence at all, the
definition simplifies to the requirement that the other system may not diverge either. We
writeN1 ≈∆

bSTb N2 iff N1 andN2 are branching ST-bisimilar with explicit divergence.

3 Distributed Systems

In this section, we stipulate what we understand by a distributed system, and subse-
quently formalise a model of distributed systems in terms ofPetri nets.

– A distributed system consists of components residing on different locations.
– Components work concurrently.
– Interactions between components are only possible by explicit communications.
– Communication between components is time consuming and asynchronous.

Asynchronous communication is the only interaction mechanism in a distributed system
for exchanging signals or information.

6 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

– The sending of a message happens always strictly before its receipt (there is a causal
relation between sending and receiving a message).

– A sending component sends without regarding the state of thereceiver; in particu-
lar there is no need to synchronise with a receiving component. After sending the
sender continues its behaviour independently of receipt ofthe message.

As explained in the introduction, we will add another requirement to our notion of a
distributed system, namely that its components only allow sequential behaviour.

Formally, we model distributed systems as nets consisting of component nets with
sequential behaviour and interfaces in terms of input and output places.

Definition 10. LetN=(S, T, F,M0, ℓ) be a Petri net,I, O⊆S, I ∩O=∅ andO• = ∅.
1. (N, I,O) is acomponent with interface(I, O).
2. (N, I,O) is asequentialcomponent with interface(I, O) iff ∃Q⊆S\(I ∪O) with

∀t ∈ T.|•t ↾Q| = 1 ∧ |t•↾Q| = 1 and|M0 ↾Q| = 1.

An input placei ∈ I of a componentC can be regarded as a mailbox ofC for a specific
type of messages. An output placeo ∈ O, on the other hand, is an address outsideC to
whichC can send messages. Moving a token intoo is like posting a letter. The condition
o• = ∅ says that a message, once posted, cannot be retrieved by the component.

A set of places likeQ above is called anS-invariant. The requirements guarantee
that the number of tokens in these places remains constant, in this case1. It follows that
no two transitions can ever fire concurrently (in one step). Conversely, whenever a net is
sequential, in the sense that no two transitions can fire in one step, it is easily converted
into a behaviourally equivalent net with the requiredS-invariant, namely by adding
a single marked place with a self-loop to all transitions. This modification preserves
virtually all semantic equivalences on Petri nets from the literature, including≈∆

bSTb.
Next we define an operator for combining components with asynchronous commu-

nication by fusing input and output places.

Definition 11. LetK be an index set.
Let ((Sk, Tk, Fk,M0k, ℓk), Ik, Ok) with k ∈ K be components with interface such that
(Sk ∪ Tk)∩ (Sl ∪ Tl) = (Ik ∪Ok)∩ (Il ∪Ol) for all k, l ∈ K with k 6= l (components
are disjoint except for interface places) and moreoverIk ∩ Il = ∅ for all k, l ∈ K with
k 6= l (mailboxes cannot be shared; the recipient of a message is always unique).
Then theasynchronous parallel compositionof these components is defined by

∥

∥

∥

i∈K

((Sk, Tk, Fk,M0k, ℓk), Ik, Ok) = ((S, T, F,M0, ℓ), I, O)

with S=
⋃

k∈K
Sk, T=

⋃

k∈K
Tk, F=

⋃

k∈K
Fk, M0=

∑

k∈K
M0k, ℓ=

⋃

k∈K
ℓk (com-

ponentwise union of all nets),I=
⋃

k∈K
Ik (we accept additional inputs from outside),

andO=
⋃

k∈K
Ok \

⋃

k∈K
Ik (once fused with an input,o∈OI is no longer an output).

Observation 1. ‖ is associative.

This follows directly from the associativity of the (multi)set union operator. ⊓⊔
We are now ready to define the class of nets representing systems of asynchronously
communicating sequential components.

Definition 12. A Petri netN is anLSGA net(a locally sequential globally asynchronous
net) iff there exists an index setK and sequential components with interfaceCk, k ∈ K,
such that(N, I,O) = ‖k∈KCk for someI andO.

On Distributability of Petri Nets 7

Up to≈∆
bSTb—or any reasonable equivalence preserving causality and branching time

but abstracting from internal activity—the same class of LSGA systems would have
been obtained if we had imposed, in Def. 10, thatI, O andQ form a partition ofS and
that•I = ∅. However, it is essential that our definition allows multiple transitions of a
component to read from the same input place.

In the remainder of this section we give a more abstract characterisation of Petri nets
representing distributed systems, namely asdistributedPetri nets, which we introduced
in [5]. This will be useful in Section 4, where we investigatedistributability using this
more semantic characterisation. We show below that the concrete characterisation of
distributed systems as LSGA nets and this abstract characterisation agree.

Following [1], to arrive at a class of nets representing distributed systems, we as-
sociatelocalities to the elements of a netN = (S, T, F,M0, ℓ). We model this by a
functionD : S ∪ T → Loc, with Loc a set of possible locations. We refer to such a
function as adistributionof N . Since the identity of the locations is irrelevant for our
purposes, we can just as well abstract from Loc and representD by the equivalence
relation≡D onS ∪ T given byx ≡D y iff D(x) = D(y).

Following [5], we impose a fundamental restriction on distributions, namely that
when two transitions can occur in one step, they cannot be co-located. This reflects our
assumption that at a given location actions can only occur sequentially.

In [5] we observed that Petri nets incorporate a notion of synchronous interaction,
in that a transition can fire only by synchronously taking thetokens from all of its
preplaces. In general the behaviour of a net would change radically if a transition would
take its input tokens one by one—in particular deadlocks maybe introduced. Therefore
we insist that in a distributed Petri net, a transition and all its input places reside on
the same location. There is no reason to require the same for the output places of a
transition, for the behaviour of a net would not change significantly if transitions were
to deposit their output tokens one by one [5].

This leads to the following definition of a distributed Petrinet.

Definition 13 ([5]). A Petri netN = (S, T, F,M0, ℓ) is distributediff there exists a
distributionD such that

(1) ∀s ∈ S, t ∈ T. s ∈ •t ⇒ t ≡D s,
(2) ∀t, u ∈ T. t ⌣ u ⇒ t 6≡D u.

N is essentially distributedif (2) is weakened to∀t, u∈T. t ⌣ u∧ℓ(t) 6= τ ⇒ t 6≡D u.

A typical example of a net which is not distributed is shown inFig. 1 on Page 9. Tran-
sitionst andv are concurrently executable and hence should be placed on different lo-
cations. However, both have preplaces in common withu which would enforce putting
all three transitions on the same location. In fact, distributed nets can be characterised
in the following semi-structural way.

Observation 2. A Petri net is distributed iff there is no sequencet0, . . . , tn of transi-
tions witht0 ⌣ tn and•ti−1 ∩

•ti 6= ∅ for i = 1, . . . , n. ⊓⊔

It turns out that the classes of LSGA nets and distributable nets essentially coincide.
Moreover, up to≈∆

bSTb these classes also coincide with the more liberal notion of es-
sentially distributed nets, permitting concurrency of internal transitions at the same lo-
cation. We will make use of that in proving our main theorem.

8 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

Theorem 1. Any LSGA net is distributed, and for any essentially distributed netN
there is an LSGA netN ′ with N ′ ≈∆

bSTb N .

Proof. In the full version of this paper [6]. ⊓⊔

Observation 3. Every distributed Petri net is a structural conflict net. ⊓⊔

Corollary 1. Every LSGA net is a structural conflict net. ⊓⊔

4 Distributable Systems

We now consider Petri nets as specifications of concurrent systems and ask the question
which of those specifications can be implemented as distributed systems. This question
can be formalised as

Which Petri nets are semantically equivalent to distributed nets?

Of course the answer depends on the choice of a suitable semantic equivalence. Here
we will answer this question using the two equivalences introduced in Section 2. We
will give a precise characterisation of those nets for whichwe can find semantically
equivalent distributed nets. For the negative part of this characterisation, stating that
certain nets are not distributable, we will use step readiness equivalence, which is one
of the simplest and least discriminating equivalences imaginable that abstracts from
internal actions, but preserves branching time, concurrency and divergence to some
small degree. As explained in [5], giving up on any of these latter three properties
would make any Petri net distributable, but in a rather trivial and unsatisfactory way.
For the positive part, namely that all other nets are indeed distributable, we will use the
most discriminating equivalence for which our implementation works, namely branch-
ing ST-bisimilarity with explicit divergence, which is finer than step readiness equiv-
alence. Hence we will obtain the strongest possible resultsfor both directions and it
turns out that the concept of distributability is fairly robust w.r.t. the choice of a suitable
equivalence: any equivalence notion between step readiness equivalence and branching
ST-bisimilarity with explicit divergence will yield the same characterisation.

Definition 14. A Petri netN is distributableup to an equivalence≈ iff there exists a
distributed netN ′ with N ′ ≈ N .

Formally we give our characterisation of distributabilityby classifying which finitary
plain structural conflict nets can be implemented as distributed nets, and hence as LSGA
nets. In such implementations, we use invisible transitions. We study the concept “dis-
tributable” for plain nets only, but in order to get the largest class possible we allow
non-plain implementations, where a given transition may besplit into multiple transi-
tions carrying the same label.

It is well known that sometimes a global protocol is necessary to implement syn-
chronous interaction present in system specifications. In particular, this may be needed
for deciding choices in a coherent way, when these choices require agreement of mul-
tiple components. The simple net in Fig. 1 shows a typical situation of this kind. Inde-

On Distributability of Petri Nets 9

pendent decisions of the two choices might lead
to a deadlock. As remarked in [5], for this par-
ticular net there exists no satisfactory distributed
implementation that fully respects the reactive
behaviour of the original system. Indeed such
M-structures, representing interference between
concurrency and choice, turn out to play a cru-
cial rôle for characterising distributability.

p q

a t b u c v

Fig. 1.A fully markedM.

Definition 15. LetN = (S, T, F,M0, ℓ) be a Petri net.N has afully reachable pureM
iff ∃t, u, v ∈ T.•t∩•u 6= ∅∧•u∩•v 6= ∅∧•t∩•v = ∅∧∃M ∈ [M0〉.•t∪•u∪•v ⊆ M .

Note that Definition 15 implies thatt 6= u, u 6= v andt 6= v.

We now give an upper bound on the class of distributable nets by adopting a result
from [5].

Theorem 2. LetN be a plain structural conflict Petri net. IfN has a fully reachable
pureM, thenN is not distributable up to step readiness equivalence.

Proof. In [5] this theorem was obtained for plain one-safe nets.4 The proof applies
verbatim to plain structural conflict nets as well. ⊓⊔

Since≈∆
bSTb is finer than≈R, this result holds also for distributability up to≈∆

bSTb (and
any equivalence between≈R and≈∆

bSTb).
In the following, we establish that this upper bound is tight, and hence a finitary

plain structural conflict net is distributable iff it has no fully reachable pureM. For this,
it is helpful to first introduce macros in Petri nets for reversibility of transitions.

4.1 Petri nets with reversible transitions

A Petri net with reversible transitionsgeneralises the notion of a Petri net; its se-
mantics is given by a translation to an ordinary Petri net, thereby interpreting the re-
versible transitions as syntactic sugar for certain net fragments. It is defined as a tuple
(S, T,Ω, ı, F,M0, ℓ) with S a set of places,T a set of (reversible) transitions, labelled
by ℓ : T → Act

.
∪ {τ}, Ω a set ofundo interfaceswith the relationı ⊆ Ω × T linking

interfaces to transitions,M0 ∈ INS an initial marking, and

F : (S × T × {in, early, late, out, far} → IN)

the flow relation. Fort ∈ T andtype ∈ {in, early, late, out, far}, the multiset of places
ttype∈INS is given byttype(s) = F (s, t, type). Whens∈ttype for type ∈ {in, early, late},
the places is called apreplaceof t of type type; whens ∈ ttype for type ∈ {out, far},
s is called apostplaceof t of type type. For each undo interfaceω ∈ Ω and transitiont
with ı(ω, t) there must be placesundoω(t), resetω(t) andackω(t) in S. A transition
with a nonempty set of interfaces is calledreversible; the other (standard) transitions
may have pre- and postplaces of typesin andout only—for these transitionstin = •t and
tout = t•. In caseΩ = ∅, the net is just a normal Petri net.

4 In [5] the theorem was claimed and proven only for plain nets with a fully reachablevisible
pureM; however, for plain nets the requirement of visibility is irrelevant.

10 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

A global state of a Petri net with reversible transitions is given by a markingM∈INS,
together with the state of each reversible transition “currently in progress”. Each tran-
sition in the net can fire as usual. A reversible transition can moreover take back (some
of) its output tokens, and beundoneandreset. When a transitiont fires, it consumes
∑

type∈{in, early, late} F (s, t, type) tokens from each of its preplacess and produces
∑

type∈{out, far} F (s, t, type) tokens in each of its postplacess. A reversible transition
t that has fired can start its reversal by consuming a token fromundoω(t) for one of its
interfacesω. Subsequently, it can take back one by one a token from its postplaces of
type far. After it has retrieved all its output of typefar, the transition is undone, thereby
returningF (s, t, early) tokens in each of its preplacess of typeearly. Afterwards, by con-
suming a token fromresetω(t), for the same interfaceω that started the undo-process,
the transition terminates its chain of activities by returning F (s, t, late) tokens in each
of its late preplacess. At that occasion it also produces a token inackω(t). Alternatively,
two tokens inundoω(t) andresetω(t) can annihilate each other without involving the
transitiont; this also produces a token inackω(t). The latter mechanism comes in action
when trying to undo a transition that has not yet fired.

Fig. 2 shows the translation of a reversible transitiont with ℓ(t) = a into a ordi-
nary net fragment. The arc weights on the green (or grey) arcsare inherited from the
untranslated net; the other arcs have weight 1.

(in)(late) (early)

undoω(t)

resetω(t)

ackω(t)(far)

(out)

a

t
ω

f

o

i l e

take(f, t)

τ

t · undo(f) took(f, t)

τ

t · undoω

τ t · undone

fired(t) ρ(t)

a

t · fire

τ

t · resetω

undoω(t)

ρω(t)

τt · elideω

ackω(t)

resetω(t)

∀f ∈ t far

∀o ∈ tout

∀i ∈ tin ∀l ∈ tlate ∀e ∈ tearly

∀ω.ı(ω, t)

Fig. 2.A reversible transition and its macro expansion.

On Distributability of Petri Nets 11

4.2 The conflict replicating implementation

Now we establish that a finitary plain structural conflict netthat has no fully reachable
pureM is distributable. We do this by proposing theconflict replicating implementation
of any such net, and show that this implementation is always (a) essentially distributed,
and (b) equivalent to the original net. In order to get the strongest possible result, for
(b) we use branching ST-bisimilarity with explicit divergence.

To define the conflict replicating implementation of a netN = (S, T, F,M0, ℓ) we
fix an arbitrary well-ordering< on its transitions. We letb, c, h, i, j, k, l range over these
ordered transitions, and write

– i#j iff i 6=j∧•i∩•j 6=∅ (transitionsi andj arein conflict), andi
#
=j iff i#j∨i=j,

– i <# j iff i < j ∧ i# j, andi ≤# j iff i <# j ∨ i = j.

Fig. 3 shows the conflict replicating implementationN . It is presented as a Petri net
I(N) = (S′, T ′, F ′, Ω, ı,M ′

0, ℓ
′) with reversible transitions. The setΩ of undo inter-

faces (not drawn) isT , and fori∈Ω we haveı(i, t) iff t∈Ωi, where the sets of transitions
Ωi ∈ INT ′

are specified in Fig. 3. The implementationI(N) inherits the places ofN
(i.e. S′ ⊇ S), and we postulate thatM ′

0↾S = M0. Given this, Fig. 3 is not merely
an illustration ofI(N)—it provides a complete and accurate description of it, thereby
defining the conflict replicating implementation of any net.In interpreting this figure
it is important to realise that net elements are completely determined by their name
(identity), and exist only once, even if they show up multiple times in the figure. For
instance, the placeπh#j with h=2 andj=5 (when using natural numbers for the transi-
tions inT) is the same as the placeπj#l with j=2 andl=5; it is a standard preplace of
executei

2 (for all i ≤# 2), a standard postplace offetchedi
2, as well as a late preplace

of transfer25.
The rôle of the transitionsdistributep for p∈S is to distribute a token inp to copies

pj of p in the localities of all transitionsj ∈ T with p ∈ •j. In casej is enabled inN ,
the transitioninitialisej will become enabled inI(N). These transitions put tokens in
the placesprej

k, which are preconditions for all transitionsexecutej
k, which model the

execution ofj at the location ofk. When two conflicting transitionsh andj are both
enabled inN , the first stepsinitialiseh andinitialisej towards their execution inI(N)
can happen in parallel. To prevent them from executing both,executej

j (of j at its own
location) is only possible aftertransferhj , which disablesexecuteh

h.
The main idea behind the conflict replicating implementation is that a transition

h∈T is primarily executed by a sequential component of its own, but when a conflicting
transitionj gets enabled, the sequential component implementingj may “steal” the
possibility to executeh from the home component ofh, and keep the options to do
h andj open until one of them occurs. To preventh andj from stealing each other’s
initiative, which would result in deadlock, a global asymmetry is built in by ordering
the transitions. Transitionj can steal the initiative fromh only whenh < j.

In casej is also in conflict with a transitionl, with j < l, the initiative to perform
j may subsequently be stolen byl. In that case eitherh andl are in conflict too—then
l takes responsibility for the execution ofh as well—orh and l are concurrent—in
that caseh will not be enabled, due to the absence of fully reachable pure Ms in N .
The absence of fully reachable pureMs also guarantees that it cannot happen that two
concurrent transitionsj andk both steal the initiative from an enabled transitionh.

12 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

∀j ∈ T ′

∀p ∈ •j

∀h <# j

∀i ≤# j

∀k ≥# j

∀l ># j

∀q ∈ •i

∀c ∈ q•

∀r ∈ i •

∀t ∈ Ωi := {initialisec | c
#
= i}+

{transferbc | b <
c

#
= i}

F (p, j)

F (i, r)

F (q, i)

p

τdistributep

pj

prej

k

πj

τinitialisej

transh
j -in

πh#j τ transferhj

transh
j -outprei

j

πj#l

ℓ(i)

executei
j

undoi(t)

fetchq,c
i,j -in

qc τ fetchq,c
i,j

fetchq,c
i,j -out

τfetchedi
j

acki(t)reseti(t)

τfinalisei

r

Fig. 3. The conflict replicating implementation

On Distributability of Petri Nets 13

After the firing ofexecutei
j all tokens that were left behind in the process of care-

fully orchestrating this firing will have to be cleaned up, toprepare the net for the next
activity in the same neighbourhood. This is the reason for the reversibility of the tran-
sitions preparing the firing ofexecutei

j . Hence there is an undo interface for each tran-
sition i ∈ T ′, cleaning up the mess made in preparation of firingexecutei

j for somej.
Ωi is the multiset of all transitionst that could possibly have contributed to this. For
each of them its interfacei is activated, byexecutei

j depositing a token inundoi(t).
When all preparatory transitions that have fired are undone,tokens appear in the places
pc for all p∈ •i andc ∈ p•. These are collected byfetchp,c

i,j , after which allt ∈ Ωi get
a reset signal. Those that have fired and were undone are reset, and those that never
fired performelidei(t). In either case a token appears inacki(t). These are collected
by finalisei, which finishes the execution ofi by depositing tokens in its postplaces.

Proposition 1. I(N) is essentially distributed for every Petri netN .

Proof sketch.We take thecanonicaldistributionD of N , in which≡D is the equiva-
lence relation on places and transitionsgeneratedby Condition (1) of Definition 13. We
need to show thatD satisfies the weakened Condition 2. Any location that harbours an
external transitionexecutei

j for somei≤ j ∈T ′, also harboursinitialisej ·undo(prei
j),

transferhj ·undo(transhj -out) for all h<#j, executei
j for all i ≤# j, and, for alll ># j,

transferjl ·fire andinitialisel·undo(transjl -in). In [6] we show that none of these tran-
sitions can happen concurrently withexecutei

j .

Theorem 3. LetN be a finitary plain structural conflict net without a fully reachable
pureM. ThenN is distributable up to≈∆

bSTb.

Proof. In the full version of this paper [6]. There we show thatI(N) ≈∆
bSTb N . Hence

I(N) is a essentially distributed implementation ofN . Now apply Theorem 1. ⊓⊔

Given the complexity of our construction, no techniques known to us were adequate
for performing this proof. We therefore had to develop an entirely new method for
rigorously proving the equivalence of two Petri nets up to≈∆

bSTb, one of which known
to be plain. This method is presented in [6].

Corollary 2. LetN be a finitary plain structural conflict net. ThenN is distributable
iff it has no fully reachable pureM. ⊓⊔

5 Conclusion

In this paper, we have given a precise characterisation of distributable Petri nets in terms
of a semi-structural property. Moreover, we have shown thatour notion of distributabil-
ity corresponds to an intuitive notion of a distributed system by establishing that any
distributable net may be implemented as a network of asynchronously communicating
components.

In order to formalise what qualifies as a valid implementation, we needed a suitable
equivalence relation. We have chosen step readiness equivalence for showing the impos-
sibility part of our characterisation, since it is one of thesimplest and least discriminat-
ing semantic equivalences imaginable that abstracts from internal actions but preserves

14 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

branching time, concurrency and divergence to some small degree. For the positive
part, stating that all other nets are implementable, we haveintroduced a combination of
several well known rather discriminating equivalences, namely a divergence sensitive
version of branching bisimulation adapted to ST-semantics. Hence our characterisation
is rather robust against the chosen equivalence; it holds infact for all equivalences be-
tween these two notions. However, ST-equivalence (and our version of it) preserves the
causal structure between action occurrences only as far as it can be expressed in terms
of the possibility of durational actions to overlap in time.Hence a natural question
is whether we could have chosen an even stronger causality sensitive equivalence for
our implementability result, respecting e.g. pomset equivalence or history preserving
bisimulation. Our conflict replicating implementation does not fully preserve the causal
behaviour of nets; we are convinced we have chosen the strongest possible equiva-
lence for which our implementation works. It is an open problem to find a class of nets
that can be implemented distributedly while preserving divergence, branching time and
causality in full. Another line of research is to investigate which Petri nets can be imple-
mented as distributed nets when relaxing the requirement ofpreserving the branching
structure. If we allow linear time correct implementations(using a step trace equiva-
lence), we conjecture that all Petri nets become distributable. However, also in this case
it is problematic, in fact even impossible in our setting, topreserve the causal structure,
as has been shown in [14]. A similar impossibility result hasbeen obtained in the world
of theπ-calculus in [12].

The interplay between choice and synchronous communication has already been
investigated in quite a number of approaches in different frameworks. We refer to [5]
for a rather comprehensive overview and concentrate here onrecent and closely related
work.

The idea of modelling asynchronously communicating sequential components by
sequential Petri nets interacting though buffer places hasalready been considered in
[13]. There Wolfgang Reisig introduces a class of systems, represented as Petri nets,
where the relative speeds of different components are guaranteed to be irrelevant. His
class is a strict subset of our LSGA nets, requiring additionally, amongst others, that
all choices in sequential components are free, i.e. do not depend upon the existence of
buffer tokens, and that places are output buffers of only onecomponent. Another quite
similar approach was taken in [3], where transition labels are classified as being either
input or output. There, asynchrony is introduced by adding new buffer places during net
composition. This framework does not allow multiple senders for a single receiver.

Other notions of distributed and distributable Petri nets are proposed in [9,1,2]. In
these works, given a distribution of the transitions of a net, the net is distributable iff it
can be implemented by a net that is distributed w.r.t. that distribution. The requirement
that concurrent transitions may not be co-located is absent; given the fixed distribution,
there is no need for such a requirement. These papers differ from each other, and from
ours, in what counts as a valid implementation. A comparisonof our criterion with that
of Hopkins [9] is provided in [5].

In [5] we have obtained a characterisation similar to Corollary 2, but for a much
more restricted notion of distributed implementation (plain distributability), disallow-
ing nontrivial transition labellings in distributed implementations. We also proved that
fully reachable pureMs are not implementable in a distributed way, even when using

On Distributability of Petri Nets 15

transition labels (Theorem 2). However, we were not able to show that this upper bound
on the class of distributable systems was tight. Our currentwork implies the validity of
Conjecture 1 of [5]. While in [5] we considered only one-safeplace/transition systems,
the present paper employs a more general class of place/transition systems, namely
structural conflict nets. This enables us to give a concrete characterisation of distributed
nets as systems of sequential components interacting via non-safe buffer places.

References

1. E. Badouel, B. Caillaud & P. Darondeau (2002):Distributing Finite Automata Through Petri
Net Synthesis. Formal Aspects of Computing13(6), pp. 447–470.

2. E. Best & Ph. Darondeau (2011):Petri Net Distributability. In: Proceedings Ershov Infor-
matics Conference (PSI’11), Novosibirsk, Russia, LNCS, Springer. To appear.

3. D. El Hog-Benzina, S. Haddad & R. Hennicker (2010):Process Refinement and Asyn-
chronous Composition with Modalities. In N. Sidorova & A. Serebrenik, editors: Proceedings
of the 2nd International Workshop onAbstractions for Petri Nets and Other Models of Con-
currency(APNOC’10), Braga, Portugal. Available athttp://www.lsv.ens-cachan.
fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf .

4. R.J. van Glabbeek, U. Goltz & J.-W. Schicke (2011):Abstract Processes of Place/Transition
Systems. Information Processing Letters111(13), pp. 626 – 633, doi:10.1016/j.ipl.
2011.03.013 .

5. R.J. van Glabbeek, U. Goltz & J.-W. Schicke (2008):On Synchronous and Asynchronous
Interaction in Distributed Systems. In E. Ochmański & J. Tyszkiewicz, editors:Mathemat-
ical Foundations of Computer Science 2008, LNCS 5162, Springer, pp. 16–35, doi:10.
1007/978-3-540-85238-4_2 . Full version available as Technical Report 2008-03,
TU-Braunschweig;http://arxiv.org/abs/0901.0048 .

6. R.J. van Glabbeek, Goltz U & J.-W. Schicke-Uffmann (2011): On Distributability of Petri
Nets. Technical Report 2011-10, TU Braunschweig. Available athttp://theory.
stanford.edu/ ˜ rvg/abstracts.html#95 . Full version of this paper, to appear.

7. R.J. van Glabbeek & F.W. Vaandrager (1987):Petri net models for algebraic theories of
concurrency (extended abstract). In: Proc.PARLE ’87, LNCS 259, Springer, pp. 224–242.

8. R.J. van Glabbeek & W.P. Weijland (1996):Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM43(3), pp. 555–600, doi:10.1145/233551.233556 .

9. R.P. Hopkins (1991):Distributable nets. In: Advances in Petri Nets 1991, LNCS 524,
Springer, pp. 161–187, doi:10.1007/BFb0019974 .

10. R. Milner (1989):Communication and Concurrency. Prentice Hall, Englewood Cliffs.
11. E.-R. Olderog & C.A.R. Hoare (1986):Specification-oriented semantics for communicating

processes. Acta Informatica23, pp. 9–66, doi:10.1007/BF00268075 .
12. K. Peters, J.-W. Schicke & U. Nestmann (2011):Synchrony vs Causality in the Asynchronous

Pi-Calculus. In B. Luttik & F. Valencia, editors: Proceedings 18th International Workshop
on Expressiveness in Concurrency,Aachen, Germany, 5th September 2011,Electronic Pro-
ceedings in Theoretical Computer Science64, pp. 89–103, doi:10.4204/EPTCS.64.7 .

13. W. Reisig (1982):Deterministic Buffer Synchronization of Sequential Processes. Acta Infor-
matica18, pp. 115–134, doi:10.1007/BF00264434 .

14. J.-W. Schicke, K. Peters & U. Goltz (2011):Synchrony vs. Causality in Asynchronous Petri
Nets. In B. Luttik & F. Valencia, editors: Proceedings 18th International Workshop onEx-
pressiveness in Concurrency,Aachen, Germany, 5th September 2011,Electronic Proceed-
ings in Theoretical Computer Science64, pp. 119–131, doi:10.4204/EPTCS.64.9 .

15. W. Vogler (1993):Bisimulation and Action Refinement. Theor. Comput. Sci.114(1), pp.
173–200, doi:10.1016/0304-3975(93)90157-O .

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf
http://dx.doi.org/10.1016/j.ipl.2011.03.013
http://dx.doi.org/10.1016/j.ipl.2011.03.013
http://dx.doi.org/10.1007/978-3-540-85238-4_2
http://dx.doi.org/10.1007/978-3-540-85238-4_2
http://arxiv.org/abs/0901.0048
http://theory.stanford.edu/~rvg/abstracts.html#95
http://theory.stanford.edu/~rvg/abstracts.html#95
http://dx.doi.org/10.1145/233551.233556
http://dx.doi.org/10.1007/BFb0019974
http://dx.doi.org/10.1007/BF00268075
http://dx.doi.org/10.4204/EPTCS.64.7
http://dx.doi.org/10.1007/BF00264434
http://dx.doi.org/10.4204/EPTCS.64.9
http://dx.doi.org/10.1016/0304-3975(93)90157-O

	On Distributability of Petri Nets

